БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ - ορισμός. Τι είναι το БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ - ορισμός


Бесконечное произведение         

произведение бесконечного числа сомножителей u1, u2,..., un,..., т. е. выражение вида

Б. п., в котором сомножителями являются числа, иногда называемые бесконечным числовым произведением. Б. п. не всегда может быть приписано числовое значение. Если существует отличный от нуля Предел последовательности частичных произведений

pn = u1 u2... un

при n → ∞, то Б. п. называется сходящимся, a lim pn = р - его значением, и пишут:

Исторически Б. п. впервые встретились в связи с задачей о вычислении числа π. Так, французский математик Ф. Виет (16 в.) получил формулу:

а английский математик Дж. Валлис (17 в.) - формулу:

Особое значение Б. п. приобрели после работ Л. Эйлера, применившего Б. п. для изображения функций. Примером может служить разложение синуса:

Разложения функций в Б. п. аналогичны разложениям многочленов на линейные множители; они замечательны тем, что выявляют все значения независимого переменного, при которых функция обращается в нуль.

Для сходимости Б. п. необходимо и достаточно, чтобы un ≠ 0 для всех номеров n, чтобы uN > 0, начиная с некоторого номера N, и чтобы сходился ряд

Т. о., исследование сходимости Б. п. эквивалентно исследованию сходимости этого ряда.

Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, т. 2, М.- Л., 1966; Ильин В. А., Позняк Э. Г., Основы математического анализа, М., 1965.

БЕСКОНЕЧНОЕ ПРОИЗВЕДЕНИЕ         
произведение бесконечного числа сомножителей , т. е. выражение вида:
Произведение (теория категорий)         
  • Universal product of the product
  • Universal product of the product
  • center
ТАКАЯ ОПЕРАЦИЯ НАД КАТЕГОРИЯМИ, ТАКЖЕ ЕЁ РЕЗУЛЬТАТ
Произведение семейства объектов категории; Категорное произведение
Произведение двух или более объектов — это обобщение в теории категорий таких понятий, как декартово произведение множеств, прямое произведение групп и произведение топологических пространств. Произведение семейства объектов — это в некотором смысле самый общий объект, имеющий морфизмы во все объекты семейства.

Βικιπαίδεια

Бесконечное произведение
В математике для последовательности чисел a_1,a_2,a_3,\dots бесконечное произведение